If it's not what You are looking for type in the equation solver your own equation and let us solve it.
12y^2+y=35=0
We move all terms to the left:
12y^2+y-(35)=0
a = 12; b = 1; c = -35;
Δ = b2-4ac
Δ = 12-4·12·(-35)
Δ = 1681
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1681}=41$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-41}{2*12}=\frac{-42}{24} =-1+3/4 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+41}{2*12}=\frac{40}{24} =1+2/3 $
| 1/x=0.5494 | | 4x-9=7x+7 | | (8x-1)=(9x-11) | | 6x-3+7x-24=180 | | X+2=-1/2x+8 | | 5-1.5x=12.5 | | 4x+10=x-25 | | -2(x+0.5)=-2.5(x-1 | | 3a+43=9a-29 | | 13-5f=63 | | 2/3m-2/3+9=m-2/3+15 | | 5a/4=6 | | r/10+71=78 | | g/5-19=23 | | 15-0.75x=13+0.50x | | -12=p/4+-7 | | 99=(2w+7)(w) | | 5(-2x+3)+8=63 | | g/4+15=11 | | 8(-2+x)=6x=13 | | 7u=48-u | | 7/2w-3=-4/5w+1/2 | | 2x1+5x+5=90 | | 1/4x+8=x+8 | | 3(6x+2=2(9x-2) | | 20-35x=2x | | -2(3-2x)+7x=9 | | 7(f+7)=77 | | 22=2t-6 | | c+24/9=6 | | t/10+14=18 | | 9-4x+3=-8+2 |